304	Joonand of oncommodule
	the same second s
Notes	and the second sec

TOTIONAL OF CHOOMATIC DADUN

снком. 5630

-6.

Electrolytic conductivity detection of some nitrogen-containing herbicides

Recently the nitrogen detection limit of the Coulson electrolytic conductivity detector $(CCD)^1$ was extended down to 0.1 ng by incorporation of several refinements³. Also, the CCD detector has been used in the determination of s-triazine herbicides^{3,4} and insecticides⁵ at the ng level. As a prerequisite to regulatory analysis, this detector, incorporating most of the suggested refinements², was evaluated for a number of s-triazine, substituted urea, carbamate and miscellaneous herbicides.

Experimental

×____

A Microtek MT 220 gas chromatograph fitted with a Coulson electrolytic conductivity detector Model C321 and a ⁶³Ni (14.5 mCi) electron capture detector was

TABLE I

RELATIVE RETENTION TIME AND DETECTOR RESPONSE OF SOME SUBSTITUTED UREAS

R1

No.	Herbicide	Structure		I/2 f.s.	1/2 f.s.d. (ng)		R _p		
		R ₁	X _n	CCD	⁶⁸ Ni	017-11 at 195°	017-17 ^b at 180°		
I	Fluometuron	Me	3-CF ₃	100			0.002		
2	Fenuron	Me		100		0.11	0.028		
3	Monuron	Me	4-C1	100	1.5	0.20	0.036		
4	Diuron	Me	3,4-dichloro	1.00	0.5	0.19	0.06		
5	Neburon	n-Bu	3.4-dichloro	100	I.O	0.19	0.061		
6	Monolinuron	OMe	4-C 1	200	5.0	0.45	0.04		
7	Metobromuron	OMe	4-Br	200	0.5	0.14	0.05		
8	Linuron	OMe	3,4-dichloro	200	0.5	0.19	0.06		
9	Chlorbromuron	OMe	3-Cl-4-Br	200	·0.4	0.22	0.09		
10	Chloroxuron	Ме	ci	- 200	5.0	0.83	0.72 ^c		

^a Parathion CCD retention time, 5.5 min.

^b Parathion CCD retention time, 31.1 min.

° Column temperature 225°; Parathion CCD retention time, 5.6 min.

used. The 6 ft. \times 6 mm O.D. glass columns were packed with 3 % OV-I on 80-I00 mesh Chromosorb W HP or 5 % OV-I7 on 80-I00 mesh Gas-Chrom Q. The operating conditions were: injector temperature, 230°; column temperature, in the range I30-225°, as indicated, ⁶³Ni detector temperature, 300°; nitrogen carrier, 60 ml/min. The conductivity detector was connected by means of a I/8 in. stainless-steel transfer line, maintained at 230°; pyrolyzer unit, 850°; helium carrier, 60 ml/min; helium sweep, 60 ml/min; hydrogen flow, I00 ml/min; DC bridge potential, 30 V; attentuator, I. The conductivity detector also incorporated a strontium hydroxide scrubber, teflon tubing insert and 50 strand nickel wire catalyst. A I mV strip-chart recorder operating at 0.5 in./min was used.

Standard herbicide solutions were prepared in redistilled hexane, benzene, acetone or methanol, depending upon solubility, at a concentration of 10 mg/100 ml and serially diluted. Injection volumes of 2–10 μ l were normally employed.

TABLE II

RELATIVE RETENTION TIMES AND DETECTOR RESPONSE OF SOME S-TRIAZINES

s-Triazine	Structure			r/2 f.s.a	d. (ng)	R_p	
	X	R ₁	R ₂	CCD	⁶³ Ni	0V-1 at 195°	0V-17 at 225°
Simazine	Cl	Et	Et	7	2.2	0.44	0.49
Atrazine	CI	Et	<i>i</i> -Pr	7	2.2	0.45	0.46
Propazine	Cl	<i>i</i> -Pr	<i>i</i> -Pr	7	1.1	0.45	0.43
Prometone	OMe	<i>i</i> -Pr	<i>i</i> -Pr	7	•	0.45	0.40
Bladex	Cl	Et	-C ₃ H ₆ CN	15	0.1	0.52	0.62
Outfox	Cl	<i>i</i> -Pr	\sim	10	2.5	0.68	0.76
Prometryne	SMe	<i>i</i> -Pr	<i>i</i> -Pr	8	50.0	0.77	0.75
Bladex metabolite	Cl	H	-C3HCN	20	1.0	0.86	1.28
Dyrene	C1	Clu		200	3.0	1,14	1,28

» No NH moiety.

Results and discussions

OV-I was chosen as non-polar liquid phase due to its excellent thermal stability and the gas chromatographic (GC) column was operated at 195°. Similarly, the OV-17 phase also has high temperature stability and has found wide-spread use in pesticide residue analysis^{6,7}, in particular, the organophosphorus insecticides⁸. As OV-17 is of intermediate polarity various column temperatures were used.

Tables I-IV show the retention times relative to parathion for various, herbicides examined. Whenever possible, a response comparison between the CCD and 63 Ni detector, for approximate half full-scale recorder deflection (1/2 f.s.d.), was obtained.

For analysis of the substituted ureas (Table I) a column temperature of 180° was used. The urea herbicides were separated into two categories, based on CCD peak response. Compounds 1-5 (Table I) gave peaks with slight tailing, whereas ureas 6-9 exhibited considerable tailing (Fig. 1), hence the larger amounts required for 1/2 f.s.d. Utilization of both columns provided adequate separation for the substituted ureas, except for diuron, neburon and linuron, which were inseparable on either phase. Due to the long retention time of chloroxuron at 180° , analysis was performed at 225° without apparent decomposition.

TABLE III

RELATIVE RETENTION TIME AND DETECTOR RESPONSE OF SOME HERBICIDAL CARBAMATES

R ₂ -NH-CO-O-R ₁ AND	THIOLCARBAMATES	R_3 N-CO-S- R_1 AT 195°
		*

Carbamate	Structure			1/2 f.	1/2 f.s.d. (ng)		R _p	
	R ₁	R ₂		CCD	⁶³ Ni	OV-r	<i>OV-17</i> ª	
Barban	-CH ₂ C=CCI	H₂CI —		70	1.5	0.17	0.02	
Propham (IPC)	i-Pr	\prec	\supset	50		0.28	0.14	
Chlorpropham (CIPC)	i-Pr	-<		75	6.5	0.33	0.26	
Azak	Ме	₹-Ę ₹-B	Me	50		0.72	0.62	
Thiolcarbamate	Structure							
		R2	R ₃					
Vernam	n-Pr n	n-Pr	n-Pr	35		0.22	0.12	
Tillam	n-Pr n	n-Bu	Et	35		0.22	0.12	
Sutan	Et <i>i</i>	-Bu	<i>i</i> -Bu	50		0.25	0.10	

⁸ Parathion CCD retention time 12.9 min.

NOTES

TABLE IV

RELATIVE RETENTION TIME AND DETECTOR RESPONSE OF SOME MISCELLANEOUS PESTICIDAL GOM-POUNDS AT 195°

Compound	Structure	1/2 f.s.d. (ng)		Rp	R _p	
		CCD	⁶³ Ni	OV-1	01-17	
Trifluralin	n-Pr n-Pr N-Pr NO_2 CF_3 NO_2	25	0.7	0.31	°0.'19	
Benefin		25	0.4	0.41	• •0.19	
Ramrod	N-COCH2CI	50	2	0.42	0.25	
Diazinon		25	1.5	0.55	0.43	
Propanil		100	2	0.72	0. 7 0	
Parathion .	$(EtO)_2 \xrightarrow{P} 0 \xrightarrow{NO_2} NO_2$	1 50	0.5	1.00	1,00	
Diphenamid	Ph $CH - CO - N $ Me Me	1 50		1.08	1.35	
Dacthal			0.5	1.09	0.90	
Captan		250	2	1.22	·L.7	
Isocil	i-Pr-N N	150	2.5	1,94 ^a	0.9	

^a With decomposition.

à.

The s-triazines were gas chromatographed at 225° (Table II). On OV-17 all the s-triazines exhibited slight tailing. A column temperature of 200° was employed for the carbamate; thiolcarbamate and miscellaneous herbicides investigated (Tables IIII and IW). Barban was found to display a sharp reproduceable CCD peak soon after injection at 200°. With ⁶³Ni detection barban merged with the solvent front. The effect of column temperature; in the range 120–200°, on barban analysis was studied and 130° was found the most suitable for this herbicide.

Ifig: n. Chromatogram of 4 dialkyl substituted ureas (fenuron, monuron, diuron and neburon) and n methyl-methoxy urea (monolinuron) on 5% OV-17 at 180° with CCD detection.

Although some herbicides and fungicides can be included in organochlorine residue: analysis; e.g. trifluralin and captan, the use of the CCD for confirmation of identity can be a very useful adjunct. Diazinon, a two nitrogen-containing organophosphorus insecticide; was included in this study for comparison with the paration reference standard.

During the analysis of the above compounds, a number of difficulties were encountered. An array of peak slopes was obtained, and in some instances, notably the substituted ureas; reliance could not always be placed on quantitation by peak height measurements. However; quantitation was accurately accomplished via peak area measured using a digital integrator. Although the CCD is nitrogen-specific in the re-

J. Cliromatogr:,, 63; (1971): 364-369

NOTES

ductive mode, initially anomalous "solvent" peaks were observed with some liexane. benzene, acetone and methanol solvents. In one iinstance, manogradle liesane was found contaminated with acetonitrile. A different "impurity" was found in anotone, benzene and methanol from the same source. Redistillation removed the "impurity" from benzene, but not from the methandl or acctone. This "impunity" proxed to be water which gave a (COD response due tto leadhing off basic absorbent from the fibrefrax -scrubber. Water (can (originate from "\wet" (or (oxygen-containing sollvents).

Most injections were performed without resorting the une off the solvent went valve. Initially, slight coking of the scrubber occurred, but no appreciable decrease in sensitivity was encountered. This appeared tto result, by thial and emor, from correct positioning of the tteflon ttubing and scrubber in relation to the red zone of the furnace block. With constant use, over a number of months, the taffon tubing showed marked accumulation of white deposits. Since these deposits contained sodium and no strontium or silicon, it was assumed they originated from continual breakdown of the quartz combustion tube. To prevent lloss of sensitivity, the scrubber, silicone septum and tefton tubing were automatically replaced at two-month intervals.

Preliminary studies have been made with this gas almometographic system for the analysis of s-triazines in water, soil and corn ((to be published)). No extraneous interferences were encountered from soil or water but norn estimatis produced additional non-interfering peaks.

We gratefully acknowledge the warious manufacturers who supplied the analytical references standards used in this study.

Analytical Services Section, Plant Products Division, Canada Department of Agriculture, Ottawa, Ontario, KIA (OC5 (Canada)

W. P. COCHRANNE B. P. WILSON

I D. M. COULSON, J. (Gas(Chromatogr., 4 ((1966) -285.

2 G. G. PATCHETT, J. Chromatogr. Sci., 8((1970) 11.20.

- 3 W. E. WESTLAKE, A. WESTLAKE AND F. A. (GUNTHER, J. Agr. Haod Ohom., 18 (1970)) 685.
- 4 J. F. O'DONNELL, Amer. Lab., ((Feb. 1969) 31.
- D. O. EBERLE AND W. D. HORMANN, J. Ass. (Offic. Andl. (Chom., 54 (1971)) 1150.
- 6 V. LEONI AND G. PUCCETTE, J. (Chromatogr., 43 ((0969) 386.
- 7 C. A. BACHE AND D. J. LISK, J. Ass. (Offic. Andl. (Chom., 51 (1968)) 12770. 8 M. C. BOWMAN AND M. BEROZA, J. Ass. (Offic. Andl. (Chom., 53 (1977)) 4990.

Received July 22nd, 1971

[...(Dhronuttagr., (183 ((19771)) 304-309)